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Abstract: We study entanglement entropy in a particular tensor-scalar theory: Horndeski
gravity. Our goal is two-fold: investigate the Lewkowycz-Maldacena proposal for entangle-
ment entropy in the presence of a tensor-scalar coupling and address a puzzle existing in the
literature regarding the thermal entropy of asymptotically AdS Horndeski black holes. Using
the squashed cone method, i.e. turning on a conical singularity in the bulk, we derive the
functional for entanglement entropy in Horndeski gravity. We analyze the divergence struc-
ture of the bulk equation of motion. Demanding that the leading divergence of the transverse
component of the equation of motion vanishes we identify the surface where to evaluate the
entanglement functional. We show that the surface obtained is precisely the one that min-
imizes said functional. By evaluating the entanglement entropy functional on the horizon
we obtain the thermal entropy for Horndeski black holes; this result clarifies discrepancies
in the literature. As an application of the functional derived we find the minimal surfaces
numerically and study the entanglement plateaux.ar
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1 Introduction

The replica trick is the most important technique, if not the only one, to compute entangle-
ment entropy in quantum field theory. In black hole physics, it has been used since the 90s to
clarify the relation between the Bekenstein-Hawking entropy and entanglement entropy [1–4].
It was subsequently applied to study entanglement in conformal field theories [5], and yielded
answers which agree with holographic calculations using the Ryu-Takayanagi formula [6, 7].
In the framework of holography [8, 9], the replica trick has proved to be crucial as a tool to
prove the Ryu-Takayanagi formula itself [10], as well as to extend the formula to cases where
the bulk theory of gravity is a higher derivative or higher curvature theory [11] [12].
In this paper, we study the extension of the Ryu-Takayanagi formula in a different direction:
the bulk gravity theory includes non-minimally coupled matter. Curiously, while the literature
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on holographic entanglement in higher curvature theories (such as Lovelock gravity) is already
extensive [11–17], far less attention has been paid to the case of non-minimal coupling. And
the efforts have been concentrated in couplings of the type ΦR. From the viewpoint of black
hole entropy, non-minimal coupling is an interesting and puzzling topic. The finiteness of the
Bekenstein-Hawking entropy seems to indicate that the UV-divergence of the entanglement
entropy can be absorbed into Newton’s constant. For minimal coupling, this is indeed true,
but non-minimal coupling has the potential to spoil this nice structure [18, 19].
This paper is an attempt to fill in this gap in the literature. We study a theory with a tensor-
scalar coupling of the form Rµν∂µφ∂νφ, a particular case of Horndeski gravity. Horndeski
gravity, despite being discovered a few decades ago [20], fell into oblivion and only received
much attention quite recently (for a selection of recent work related to Horndeski gravity, see
for example [21–24]). For the purpose of holography, asymptotically AdS black hole solu-
tions of Horndeski gravity have been worked out explicitly [25–27], and that the parameter
space of the couplings is reasonably well understood in terms of causality and stability [29, 30].

In this paper, we use the squashed cone method to derive the entanglement entropy
functional 1; we find that it receives a contribution proportional to the gradient-square of
the scalar field. Determining the precise form of the entanglement functional for Horndeski
gravity is one of the results of this paper. We also show that demanding that the leading
divergence of the tranverse, zz, component of the equations of motion vanishes implies that
the entangling surface is a minimal surface. This is our second result.

The question of whether the entangling surface minimizes the functional found from the
squashed cone method is a topic of recent attention [32]. Until recently, there exist two main
arguments that this should be the case: the argument based on the divergences of the equation
of motion, and the cosmic-brane argument. Both these arguments are presented in [11] and
are based on the equation of motion in the bulk. One of the novelties introduced in [32] is an
argument based directly on the action, without going through the equation of motion. More
specifically, [32] considers a double variation of the bulk action (one with respect to the replica
index, and a second one which preserves the strength of the conical defect), and derives the
stationarity of the entanglement surface from it.

In higher derivative theories requiring that the surface is minimal is not enough to cancel
all the divergences. This is because in such theories generically all the components of the field
equations diverge, not only the transverse one. Furthermore, there are subleading divergences
not present in Einstein gravity. Horndeski gravity is not a higher derivative theory but we do
find a similar pattern of divergences. It is possible that just like in higher derivative theories
these divergences cancel if we allow for a more general ansatz [34].

One of the original motivations of the present work was related to a puzzle existing in
the literature of Horndeski black holes. In [27] the authors perform a careful calculation of

1See also [31] for a different approach to deriving holographic entanglement entropy via field redefinition,
which could be applicable to Horndeski gravity.
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the thermal entropy of some particular Horndeski black holes solutions. They use the Wald
formula, Euclidean regularization and the Iyer-Wald formalism and the results do not agree
with each other. Evaluating our result for the entanglement entropy on the horizon we are
able to shed some light on this issue.

The paper is organized as follows: in Section 2, we briefly review the squashed cone
method to derive entanglement entropy. In Section 3, we apply this machinery to Horndeski
gravity, and analyze the divergences of the bulk equation of motion. In Section 4, we comment
on the thermal entropy and the confusion found in the literature regarding this quantity. In
Section 5, we find the RT surfaces numerically and study the phase transition from connected
surface to disconnected surface in the case of spherical black holes. We conclude in Section 6.
We relegate the plots of the RT surfaces to Appendices A and B.

2 Review of the squashed cone method

In this section, we review the squashed cone method, an application of the replica trick to
derive holographic entanglement entropy. Besides reviewing the background material, this
section also serves to fix the notation for the rest of the paper and to lay out the basic
equations to be used later when we apply the formalism to Horndeski gravity. First, recall
the microscopic definition of entanglement entropy:

SEE = −Tr(ρ log ρ) (2.1)

where ρ is the reduced density matrix of a subregion of a time-slice of the boundary. To obtain
the entanglement entropy, the replica trick tells us to first find the nth Rényi entropy, defined
by:

Sn = − 1

n− 1
log Tr(ρn) (2.2)

The entanglement entropy is the analytical continuation of Sn as n → 1: SEE = limn→1 Sn.
From the path integral representation of ρ, we can express Sn in terms of the partition function
Zn on an appropriate n-sheeted Riemann surface Mn as:

Sn = − 1

n− 1
(logZn − n logZ1) (2.3)

where Z1 is the original partition function. Next, we use the basic holographic relation ZCFT =

e−Sbulk between the field theory partition function ZCFT and the bulk action Sbulk. If the
boundary is taken to be Mn, then this relation reads:

Zn = e−S[Bn] (2.4)

for an appropriate bulk geometry Bn. Substituting into (2.3), we find:

Sn =
1

n− 1
(S[Bn]− nS[B1]) (2.5)

– 3 –



Note that the Riemann surface Mn has a discrete Zn symmetry. If we assume that this
discrete symmetry also exists for the bulk geometry Bn, then we can consider the quotient
B̂n = Bn/Zn. Since Bn has to be regular in the interior, B̂n is regular except at the fixed
points of the Zn symmetry, which now forms a codimension-2 surface around which there is a
conical deficit. Moreover, we have:

S[Bn] = nS[B̂n] (2.6)

where we do not include any contribution from the conical deficit in S[B̂n]. The Rényi entropy
can now be written as:

Sn =
n

n− 1
(S[B̂n]− S[Bn]) (2.7)

By taking the limit n→ 1, we find the following formula for the entanglement entropy:

SEE = ∂nS[B̂n]

∣∣∣∣
n=1

= ∂εS[B̂ε]

∣∣∣∣
ε=0

(2.8)

where we introduced the parameter ε = 1 − n−1 which characterizes the strength of the
conical deficit. Unlike the original replica index n which only makes sense for integer values,
the conical deficit ε can be varied continuously. To summarize: the formula above instructs us
to solve the gravity equation of motion with some conical deficit for boundary condition, then
evaluate the on-shell action and extract the term first order in ε. We stress that the on-shell
action does not include any contribution from the conical singularity. In other words, we can
integrate over the whole spacetime outside a thin “tube” enclosing the conical defect, then at
the end shrink the diameter of the tube to zero.
On the face of it, formula (2.8) involves an integral over the whole spacetime (the on-shell
action). It turns out, however, that the entropy only receives contribution from the region near
the tip of the cone. This can be seen in several ways. One way is to argue that the variation
of the action with ε involves the integral of the equation of motion over all of spacetime, but
this integral clearly vanishes. This leaves us with a boundary term near the tip of the cone,
which contributes to the entropy. Alternatively, one can also argue as follows. Let us call the
action evaluated outside the “tube” described above Sout and the action inside the “tube” Sin.
Since the total action Sin + Sout is a variation away from an on-shell configuration (due to
turning on ε), it must be that:

∂εSout|ε=0 = −∂εSin|ε=0 (2.9)

Thus, we can trade the integral outside the tube for the one inside:

SEE = −∂εSin|ε=0 (2.10)

Again, the entropy only receives contribution from the near-tip region.
The fact that the bulk action localizes to the near-tip region means it is enough to work in
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an approximate metric near the tip. Such a coordinate system, analogous to Riemann normal
coordinates, has been worked out in [10] and [11]. The metric takes the form:

ds2 = e2A[dzdz̄ + e2AT (z̄dz − zdz̄)2] + (hij + 2Kaijx
a +Qabijx

axb)dyidyj

+ 2ie2A(Ui + Vaix
a)(z̄dz − zz̄)dyi + . . . (2.11)

Here use polar-like coordinates (ρ, τ) or complex coordinates z = ρeiτ , z̄ = ρe−iτ for the
directions transversal to the surface, and yi for the directions along the surface. The factor
e2A is given by:

e2A = (zz̄)−ε (2.12)

and encodes the conical defect. Also, Kzij and Kz̄ij is the extrinsic curvature of the surface.
Note that we expand to second order in z, z̄ in the metric (2.11). This is sufficient when the
gravity equation of motion is second order in the metric, such as Einstein gravity or Horndeski
gravity. For such a theory terms at most quadratic in z or z̄ in the metric contribute to the
curvature (and the on-shell action) at ρ = 0. For higher derivative theories, it is in general
necessary to keep higher order terms in z(z̄) in the metric (2.11). The Riemann tensor of the
metric (2.11) contains the following terms first order in ε:

Rzz̄zz̄ ∼ −
π

2
εe2Aδ2(x, y) (2.13)

Rzizj ∼ −
ε

z
Kzij (2.14)

Rz̄iz̄j ∼ −
ε

z̄
Kz̄ij (2.15)

The first one above diverges as a (2-dimensional) delta function, and the other two diverge as
z−1 2. Also, the Ricci tensor and Ricci scalar contain the following terms first order in ε:

Rzz̄ = πεδ2(x, y) (2.16)

Rzz ∼ −
ε

z
Kz (2.17)

Rz̄z̄ ∼ −
ε

z̄
Kz̄ (2.18)

R ∼ 4πεe−2Aδ2(z, z̄) (2.19)

Using the formula (2.10) together with the approximate metric (2.11), [11] derived a formula
for holographic entanglement entropy for an arbitrary theory of gravity:

SEE = 2π

∫
ddy
√
h

[
∂L

∂Rzz̄zz̄
+
∑
α

(
∂2L

∂Rzizj∂Rz̄kz̄l

)
α

8KzijKz̄kl

qα + 1

]
(2.20)

2To obtain the delta function, we used the identity ∂z(1/z̄) = ∂z̄(1/z) = πδ(2)(x, y). Here x and y are the
real and imaginary parts of z, respectively.
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Here h denotes the induced metric on the surface (we will use g for the bulk metric), z and
z̄ are complex coordinates transversal to the surface. The first term above is identical to the
Wald entropy, except that it is not evaluated on a black hole horizon (or Killing horizon)
here. As for the second term, it is an anomaly-like contribution that only arises in theories
of gravity quadratic or higher order in the curvature. For Einstein gravity, only the first term
above contributes and gives (one quarter of) the area, in agreement with the Ryu-Takayanagi
formula.
Note that the squashed cone method as described above gives us a functional for entanglement
entropy, which we are supposed to evaluate on the surface that is the fixed point of the Zn
symmetry in the bulk. In practice finding this surface from its definition is difficult, but -
as mentioned in the introduction - there exist general arguments that the surface is also the
one minimizing the functional 3. One such argument was given in [10] for Einstein gravity, as
follows. We go back to the parent space Bn by making the period of the angle τ in the metric
(2.11) 2πn instead of 2π, and extract the leading divergence of the Ricci tensor near z = z̄ = 0.
The leading divergences of Rzz and Rz̄z̄ are as previously found in (2.17) and (2.18), but the
delta function divergence of Rzz̄ no longer exists because the parent space is regular at the
fixed point of the Zn symmetry. Thus, the zz component of Einstein equation diverges as
ε
zKz. But, as argued by [10], we should not expect any divergence on physical grounds. If we
demand that the coefficient of the divergence vanishes, then we find Kz = Kz̄ = 0. This is
precisely the condition of a minimal surface (i.e. one which minimizes the area functional).

3 Entanglement functional for Horndeski gravity

In this section, we apply the squashed cone method to Horndeski gravity. The Lagrangian of
the Horndeski theory is 4:

L = − κ

16π
(R− 2Λ) +

1

32π
(αgµν − γGµν)∂µχ∂νχ (3.1)

Here κ is the inverse Newton’s constant (G−1). The equation of motion for gravity is:

0 = κ(Gµν + Λgµν)− 1

2
α

(
∂µχ∂νχ−

1

2
gµν(∂χ)2

)
− 1

2
γ

(
1

2
R∂µχ∂νχ− 2∂ρχ∂(µχRν)

ρ

− ∂ρχ∂σχRµ
ρ
ν
σ − (∇µ∇ρχ)(∇ν∇ρχ) + (∇µ∇νχ)�χ+

1

2
Gµν(∂χ)2

− gµν

[
− 1

2
(∇ρ∇σχ)(∇ρ∇σχ) +

1

2
(�χ)2 − ∂ρχ∂σχRρσ

])
(3.2)

3It is highly desirable that the surface minimizes the functional, since this would immediately imply that
the surface satisfies quantum-information properties of entanglement entropy such as the concavity [35].

4A remark about convention here is in order. We have multiplied the Lagrangian as written in the papers
[26, 27] by an overall factor of − 1

16π
. This overall factor has been chosen so that when we plug the Einstein-

Hilbert part of the action into (2.20), we obtain one-quarter of the area times G−1.
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and the one for the scalar field is:

∇µ((αgµν − γGµν)∇νχ) = 0 (3.3)

We will derive the functional for holographic entanglement entropy in two ways: the first way
is by using (2.20), and the second way is by going through the squashed cone method. We
will of course obtain the same answer in the end. The reason for this two-pronged derivation
is as follows: the formula (2.20) was technically derived in the absence of matter fields in [11],
but is expected to apply even in the presence of matter fields. By deriving the entanglement
functional for Horndeski gravity twice, we verify that (2.20) indeed applies and yields the
same answer as the more careful derivation with the matter field included at the outset of the
squashed cone method.

3.1 Derivation from Wald entropy formula

Since the Horndeski gravity action does not involve terms quadratic or higher order in the
curvature, only the Wald-like term in (2.20) contributes to the entropy, and the anomaly-like
term does not. Let us differentiate the Horndeski Lagrangian with respect to the Riemann
tensor:

∂L

∂Rµνρσ
= − κ

32π
(gµρgνσ − gνρgµσ)− γ

128π
[gµρχ,νχ,σ − gνρχ,µχ,σ + gνσχ,µχ,ρ − gµσχ,νχ,ρ

− (gµρgνσ − gνρgµσ)χ,λχ,λ] (3.4)

where χ,α = gαβχ,β . We need to take the zz̄zz̄ component of the expression above (in the
coordinate system of the metric 2.11) and evaluate on the surface (where z = z̄ = 0). It is
enough to truncate the metric 2.11 to zeroth order in z(z̄) (with the conical defect turned off):

ds2 = dzdz̄ + hijdy
idyj (3.5)

Upon substituting the metric components into (3.4), the partial derivative ∂L/∂Rzz̄zz̄ simpli-
fies to:

∂L

∂Rzz̄zz̄
=

κ

8π
− γ

32π

(
χ,λχ,λ − χ,zχ,̄z

)
(3.6)

Upon further expanding χ,λχ,λ = χ,zχ,z̄ + hijχ
,iχ,j , this further simplifies to:

∂L

∂Rzz̄zz̄
=

κ

8π
− γ

32π
hijχ

,iχ,j (3.7)

The functional for holographic entanglement entropy then reads:

SEE =
κ

4

∫
ddy
√
h
[
1− γ

4κ
hijχ

,iχ,j
]

(3.8)

Thus, the entropy receives a Wald-like correction proportional to the norm-squared of the
gradient of the scalar field on the surface. Equation 3.8 is one of the results of this paper.
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By analogy with the RT formula, the entanglement functional is expected to be evaluated in
the surface that minimizes its value. In subsection 3.3 we will show that this is indeed the
right thing to do. More precisely, we will show that demanding that the divergences of the
equations of motion cancel yields a condition that is exactly the equation of the surface that
minimizes 3.8!. This will be another important result of our work.

3.1.1 Minimization

Let us now explicitly minimize the functional (3.8) to derive the equation characterizing the
surface (the “surface equation”). To do this, we vary the embedding functions xµ(yi) of the
surface (where xµ denotes the bulk coordinates and yi denotes the coordinates on the surface),
and compute the variation δS of the functional due to δxµ. When the embedding is varied,
the value of the functional is varied due to two effects: (1) the change of the induced metric,
and (2) the change of the value of the scalar field on the surface. Thus, we have:

δS =

∫
ddy

(
δL
δhij

δhij +
δL
δχ
δχ

)
(3.9)

with δhij and δχ related to δxµ as:

δhij = gµν

(
∂δxµ

∂yi
∂xν

∂yj
+
∂xµ

∂yi
∂δxν

∂yj

)
(3.10)

δχ =
∂χ

∂xµ
δxµ (3.11)

We now adopt the coordinate system xµ = (yi, z, z̄) of the metric (2.11). This coordinate
system has the nice feature that it splits into coordinates on the surface (yi) and coordinates
transversal to the surface (z, z̄). It is enough to consider the variations δz and δz̄ (i.e. in
the normal direction), since these actually change the embedding, whereas the variations δyi

merely correspond to coordinate transformations on the surface and should not change the
value of the functional. Under the variation δz (δz̄), the first term in (3.9) can be cast in
terms of the extrinsic curvature of the surface as:

δL
δhij

δhij = 2Kaij
δL

δhij
δa (3.12)

where a = z, z̄ (see for example [17] for more details). For our specific functional (3.8), this
becomes after some algebra:

δL
δhij

δhij =

√
h

4G

[(
1− γG

4
hijχ,iχ,j

)
Ka +

γG

2
Kij
a χ,iχ,j

]
δa (3.13)

Next, consider the second term in (3.9). Under the δz (δz̄), we have:

δL
δχ
δχ =

γ

8

√
h
(
hijDiDjχ

)
χ,aδa (3.14)
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where Di is the covariant derivative on the surface. Putting both contributions of δS together,
and equating the result to zero, we finally find the surface equation:(

1− γG

4
hijχ,iχ,j

)
Ka +

γG

2
Kij
a χ,iχ,j +

γG

2
χ,ah

ijDiDjχ = 0 (3.15)

In particular, for γ = 0 we recover the minimal surface condition Ka = 0 of Einstein gravity.
Note also that the horizon of a static, spherically symmetric black hole solution also satisfies
the surface equation above, assuming that it is also a Killing horizon (as is the case with more
familiar black holes). Indeed, for a Killing horizon the extrinsic curvature Kij vanishes, and
spherical symmetry also implies that the scalar field is constant on the horizon, so that Diχ

vanishes.
Thus, the thermal entropy of the black hole should be found by evaluating the functional (3.8)
on the horizon. An immediate interesting consequence of this is that the thermal entropy is
equal to the usual Bekenstein-Hawking entropy (assuming again spherical symmetry):

Sthermal =
A

4G
(3.16)

where A is the area of the horizon. Indeed, spherical symmetry implies that the Wald-like
correction in (3.8) simply vanishes.
As pointed out in [27], however, the thermal entropy of Horndeski black holes is surprisingly
subtle, with different computation methods yielding different answers. We will revisit this
issue in Section 4, but we assume for the rest of this paper that (3.16) is the correct one. We
also stress that the Wald-like correction only vanishes for the thermal entropy, and not for
entanglement entropy of a boundary subregion as in general the scalar field is not constant
on the Ryu-Takayanagi surface.

3.2 Re-derivation by squashed cone method

We proceed to rederive the functional (3.8) using the squashed cone method, with the scalar
field put in at the outset. We will need to know the expansion of the scalar field near the
surface, in the coordinate system of the metric (2.11). This expansion is ε-dependent, since the
scalar field has to readjust itself to the the conical defect, and this ε dependence has to be fed
into the on-shell action to see if it gives rise to any additional term compared to the functional
(3.8). In the end, we will find that there are no additional terms, thus the expectation that
the functional (3.8) applies even with matter fields is borne out.
Let us first recall how the coordinate system of (2.11) is constructed. In the parent space
Bn (i.e. before the quotienting by Zn), we set up polar-like coordinate (ρ̃, τ̃) in the plane
transversal to the surface. Since the bulk has to be regular at the surface and also has the
replica Zn symmetry, any τ̃ dependence has to be through ρ̃ne±inτ̃ . In the quotient B̂n, we
redefine coordinates as follows:

ρ =

(
ρ̃

n

)n
(3.17)

τ = nτ̃ (3.18)
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The metric in terms of ρ and τ then takes the form (2.11). For the scalar field, we can proceed
similarly. Regularity and the replica symmetry dictate that the scalar field near the surface
is a function of ρ̃2 and ρ̃ne±inτ in the parent space Bn. In the quotient space, we find - to
second order in z or z̄ - a rather complicated expansion:

χ = [χ0;0 + χ0;1(zz̄)ε + χ0;2(zz̄)2ε + . . . ] + [χz;0 + χz;1(zz̄)ε + χz;2(zz̄)2ε + . . . ]z

+ [χz̄;0 + χz̄;1(zz̄)ε + χz̄;2(zz̄)2ε + . . . ]z̄ + [χz2;0 + χz2;1(zz̄)ε + χz2;2(zz̄)2ε + . . . ]z2

+ [χz̄2;0 + χz̄2;1(zz̄)ε + χz̄2;2(zz̄)2ε + . . . ]z̄2 + [χzz̄;0 + χzz̄;1(zz̄)ε + χzz̄;2(zz̄)2ε + . . . ](zz̄)1−ε

+ . . . (3.19)

where the coefficients χ0;0, χ0;1 etc. are functions of yi. Let us explain how the different
powers in the expansion above arise, especially the subleading terms in each of the square
brackets above. Consider for example the term with χ0;1. This term comes from the power
ρ̃2(n−1) in the parent space, which is consistent with regularity and replica symmetry in the
bulk. Similarly, the power (ρ̃2)2n−2 gives rise to (zz̄)2ε etc. Note that at ε = 0, each square
bracket above collapses to a constant and we find:

χ = χ0 + χzz + χz̄ z̄ + χz2z2 + χz̄2 z̄2 + χzz̄zz̄ . . . (3.20)

with χ0 =
∑∞

k=0 χ0;k, χz =
∑∞

k=0 χz;k and so on. In other words, each term in the series at
ε = 0 is a whole infinite series at ε 6= 0. This is sometimes dubbed the “splitting problem”
[32, 33].
Before proceeding with the squashed cone method, we would like to make two remarks about
the expansion (3.19) for the sake of clarity. First, the coefficients χ0;0 etc. in this expansion
are taken to be independent of ε. This is not strictly true; for example, the term ρ̃neinτ̃ in
the parent space becomes nnz ≈ (1 + ε +O(ε2))z after the coordinate transformation (3.17)
and (3.18). For general n, the ε corrections of the coefficients are not ignorable. However,
throughout this paper we work with the ε ≈ 0 (or n ≈ 1) regime, and these ε corrections are
small. Moreover, even if we keep the ε corrections, they will not contribute to the entangle-
ment entropy anyway. Note also that this discarding of the ε corrections is not specific to the
scalar field expansion: the same treatment was applied to the metric expansion (2.11), i.e.
coefficients in this expansion in general receive ε correction but they have been discarded for
the reasons above.
Our second remark is that the expansion (3.19) implies that the entanglement entropy func-
tional depends on the scalar field through the coefficients χ0;0, χ0;1, χz;0, χz;1. This may
appear peculiar for the following reason. Our experience with the usual Ryu-Takayanagi for-
mula for Einstein gravity, as well as the Jacobson-Myers functional for Gauss-Bonnet gravity,
would suggest that the entanglement functional should be a function of the value of the scalar
field or its derivatives at ε = 0. On the other hand, each of the coefficient χ0;0, χ0;1 etc. does
not really have an intrinsic meaning at ε = 0 (only the sums

∑
k χ0;k,

∑
k χz,k etc. do: the

first is the value of the scalar field on the minimal surface, and the second is the derivative of
the scalar field in the z direction on the minimal surface).
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Fortunately, we find that the entanglement functional indeed depends on the coefficients in
(3.19) only through the sums

∑
k χ0;k = χ0,

∑
k χz;k = χz etc., in other words the functional

only depends on quantities which “make sense” at ε = 0. Roughly speaking, this is because
we need to look for terms first order in ε in the action. While one can extract many terms
first order in ε from the expansion (3.19), the only terms first order in ε that matter come
from the curvature at the tip of the cone, i.e. the coupling of the scalar field to the conical
singularity. But the scalar field that appear in such terms can be evaluated at ε = 0 since the
curvature is already first order in ε, therefore only the expansion (3.20) really matters.
Using the scalar field expansion together with equations (2.17), (2.16), (2.18) and (2.19) for
the singular terms of the Ricci tensor and Ricci scalar, we then find the term first order in ε
of the non-minimal coupling part of the action:

S
(1)
NMC =

γε

32π

∫
ρ∼0

√
gddx

[
8e−4A

(
Kz

z
(χz̄)

2 +
Kz̄

z̄
(χz)

2

)
(3.21)

+ 2πe−2Aδ2(x1, x2)hijχ0,iχ0,j

]
where the subscript NMC stands for non-minimal coupling, and the superscript (1) means
first order in ε. We can easily argue that the terms in S(1)

NMC containing Kz̄ and Kz vanish.
This is because the integral is regular at the origin and we integrate over an infinitesimally
small region around the tip of the cone. Thus, we are left with only the term with the delta
function. The above then simplifies to:

S
(1)
NMC =

γε

16

∫
dd−2y

√
hhijχ,iχ,j (3.22)

where we have replaced χ0,i by χ,i since the functional above is to be evaluated on the surface
z = z̄ = 0, where those two quantities agree. By the formula (2.10), this contributes to the
entropy an amount:

S
(NMC)
EE = − γ

16

∫ √
hdd−2yhijχ,iχ,j (3.23)

We now combine the contribution above to the area functional from the Einstein-Hilbert part
of the action, to obtain the total functional:

SEE =
1

4G

∫
dd−2y

√
h

(
1− γG

4
hij∂iχ∂jχ

)
(3.24)

in agreement with the functional previously derived from (2.20) which in this case is equivalent
to the Wald entropy formula.

3.3 Canceling divergences of the equation of motion

In this subsection, we go back to the parent space Bn and extract the leading order divergence
in the equation of motion. We will continue to work with the metric (2.11) but with τ ∼ τ+2πn

so that there is no conical singularity. Similarly, we will use the expansion (3.19) of the scalar
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field, but this expansion is now understood as an expansion in the parent space rather than
the quotient space.
The divergences of the bulk equation of motion come from two contributions: (1) first, there
are divergences from the components Rzizj and Rz̄iz̄j of the Riemann tensor, like in Einstein
gravity; (2) Secondly, the components ∇z∇zχ and ∇z̄∇z̄χ of the second covariant derivative
of the scalar field also contribute divergences. This is because the Christoffel symbols Γzzz and
Γz̄z̄z̄ also contain 1/z divergences:

Γzzz ∼ −
ε

z
(3.25)

Γz̄z̄z̄ ∼ −
ε

z̄
(3.26)

Therefore, the following components of ∇µ∇νχ diverge:

∇z∇zχ ∼
ε

z
χ,z (3.27)

∇z̄∇z̄χ ∼
ε

z̄
χ,z̄ (3.28)

Consider first the zz component of the gravity equation. Term by term, we find the following
contributions to the ε/z divergence:

Gzz ∼ −
ε

z
Kz (3.29)

1

2
γ∂ρχ∂σχRzρzσ ∼ −

ε

2z
γKij

z χ0,iχ0,j (3.30)

γ

2
(∇z∇ρχ)(∇z∇ρχ) ∼ 2

ε

z
γχzχzz̄ (3.31)

− γ

2
(∇z∇zχ)�χ ∼ −γ

2

ε

z
χz(4χzz̄ + hijDiDjχ0) (3.32)

− γ

2

1

2
Gzz(∂χ)2 =

γε

4z
Kzh

ijχ0,iχ0,j (3.33)

and all other terms in the equation of motion are non-singular.
Let us sketch out how to obtain some of the expressions above in details. In most of the
equations above (namely, equations (3.30), (3.32) and (3.33)), the (ε/z) factor comes from the
metric (through the curvature tensor or the Christoffel symbols), and for the scalar part it
suffices to use the scalar field expansion at ε = 0 (equation (3.20)) 5.
In the case of equation (3.31), however, the divergence coming from the metric is actually

5More properly, suppose we insist on using the expansion (3.19) at finite ε. Then equations (3.30), (3.32)
and (3.33) each will take the form of the product of (ε/z) and a Taylor series in (zz̄)ε. In other words, we have
a hierarchy of divergences. This is a manifestation of the “splitting problem” on the level of the divergences of
the equation of motion.
However, we are trying to demonstrate that the coefficient of the (ε/z) yields the minimal surface as ε → 0.
Thus we have simply evaluated the coefficient of (ε/z) at ε = 0, which collapses the hierarchy and amounts to
plugging in the scalar field expansion at zero epsilon at the outset.
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slightly sublinear, but the scalar expansion (3.19) for ε 6= 0 actually results in a slight en-
hancement of the divergence from sublinear to linear. To see this, note that when we expand
the sum over ρ in (3.31), the only singular term is 2gzz̄(∇z∇zχ)(∇z∇z̄χ). Expanding the
second covariant derivatives into partial derivatives and Christoffel symbols, we further find
that the leading divergent part of this expression is 4ρ2ε ε

zχ,zχ,zz̄, which is slightly subleading
compared to the ε/z divergence. Using (3.19), however, we find that χ,zz̄ secretly contains a
factor of ρ−2ε:

χ,zz̄ = χzz̄(1− ε)2(zz̄)−ε + . . . (3.34)

Thus, there is an enhancement from a slightly subleading divergence (of the order of ρ2ε ε
z to a

leading divergence ( εz ), and we obtain (3.31). Note also the delicate cancellation of the terms
with χzz̄ in (3.31) and (3.32).
Now we add up (3.29)-(3.33) and demanding that the ε/z divergence cancels. We then find
the condition: (

−1 +
γG

4
hijχ,iχ,j

)
Kz −

γG

2
Kij
z χ,iχ,j −

γG

2
χ,zh

ijDiDjχ = 0 (3.35)

where we dropped the subscript 0 in χ0 (and replaced it simply by χ), and also replaced χz
by χ,z it is now implicitly understood that this is an equation at ε = 0 and at z = z̄ = 0.
Comparing with the surface equation (3.15), we see that this is precisely the same equation.
Thus, the Lewkowycz-Maldacena prescription of fixing the surface by the divergence of the
equation of motion works at least with respect to the 1/z divergence of the zz component of
the equation of motion.
We end this section by mentioning the divergences appearing in the other components of the
gravity equation of motion as well as the scalar equation. The divergence of the z̄z̄ component
is the same as that of the zz component, except for the substitution z → z̄. The zi component
has no first order divergence, but it does have slightly subleading ones (of order z1−ε).
As for the zz̄ component, two of the terms actually have a quadratic divergence:

γ

2
(∇z∇ρχ)(∇z̄∇ρχ) ∼ γe−2A ε

2

zz̄
χzχz̄ + . . . (3.36)

− γ

4
gzz̄(∇ρ∇σχ)(∇ρ∇σχ) ∼ −γe−2A ε

2

zz̄
χzχz̄ + . . . (3.37)

where . . . stands for subleading divergences (including linear). But the quadratic divergences
in these two terms exactly cancel out each other !
Finally, we consider the ij component. This one has a genuine quadratic divergence:

γ

4
hij(∇ρ∇σχ)(∇ρ∇σχ) ∼ −2γhije

−4A ε
2

zz̄
χzχz̄ (3.38)

Similar, the equation of motion for the scalar field also has a quadratic divergence:

− γGµν∇µ∇νχ ∼ γ
8ε2

zz̄
e−4A(Kz̄χz +Kzχz̄) (3.39)
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The presence of the subleading divergences as well as quadratic divergences is somewhat
troublesome, but it is a feature that Horndeski theory shares with higher derivative/higher
curvature gravity (see for example [15]). In fact, the divergence structure is strikingly similar:
the paper [15] shows that the ij component of the equation of motion also suffers from a
quadratic divergence in Gauss-Bonnet gravity. We will leave the question of how to get rid of
these other divergences to future work, but the work [34] is a promising step in this direction:
the authors of [34] show that an ansatz more general than (2.11) is needed to cancel the
subleading divergences. We will come back to this point in the Conclusion section.

4 Comments on the thermal entropy

In this section, we revisit the issue of the thermal entropy for the black hole solution in
Section 5. As pointed out in the literature [27], the standard methods of deriving the entropy
(Wald’s entropy formula, the Iyer-Wald formalism, and the Euclidean method) seem to yield
conflicting answers. We will make the case that the correct entropy should be the one given in
(3.16), i.e. the Wald entropy (which happens to coincide with the usual Bekenstein-Hawking
entropy).
As shown in [27], Horndeski gravity admits black hole solutions given by:

ds2 = −h(r)dt2 +
dr2

f(r)
+ r2dΩ2

d−2,ε (4.1)

h(r) =
(d− 1)2β2γ2g4r4

ε(d+ 1)(d− 3)(4κ+ βγ)2 2F1

(
1,

1

2
(d+ 1),

1

2
(d+ 3),− d− 1

(d− 3)ε
g2r2

)
− µ

rd−3
+

8κ[g2r2(2κ+ βγ) + 2εκ]

(4κ+ βγ)2
(4.2)

f(r) =
(4κ+ βγ)2[(d− 1)g2r2 + (d− 3)ε]2

[(d− 1)(4κ+ βγ)g2r2 + 4(d− 3)εκ]2
h(r) (4.3)

(
dχ

dr

)2

=
β

f

(
1 +

(d− 3)ε

(d− 1)g2r2

)−1

(4.4)

where d is the dimension, and ε = −1, 0, 1 correspond to a hyperbolic, planar and spherical
horizon, respectively. Also, the constants g and β are related to the couplings α and Λ in the
action by:

α =
1

2
(d− 1)(d− 2)g2γ (4.5)

Λ = −1

2
(d− 1)(d− 2)g2

(
1 +

βγ

2κ

)
(4.6)
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4.1 Black hole entropy from Iyer-Wald formalism

Following [27], let us review the computation of black hole entropy used the Iyer-Wald for-
malism. This formalism gives us 2 statements related to the entropy: (1) the first law of
black hole mechanics, and (2) the statement relating the integral of the Noether charge (of
diffeomorphism invariance) over the bifurcation surface of the black hole to the entropy.
To obtain the first statement (the first law), we compute a closed differential form δQ− ξ ·Θ,
where δQ is an on-shell perturbation of the Noether charge (of diffeomorphism invariance), ξ is
the bifurcate timelike Killing vector field of the black hole, and Θ is the boundary term of the
gravity action. The first law of black hole thermodynamics then comes out as the equation:∫

∞
δQ− ξ ·Θ =

∫
H
δQ− ξ ·Θ (4.7)

where, on the left hand side, we integrate this differential form on a sphere at infinity, and on
the right-hand side we integrate on the bifurcation surface of the black hole. In the case of
Einstein gravity, the left-hand side above coincides with the mass perturbation δM , and the
right-hand side coincides with TδS.
The second statement of the Iyer-Wald formalism tells us that:∫

H
Q = TS (4.8)

In other words, the integral of Q over the bifurcation surface equals the product of the tem-
perature and the entropy.
Let us now examine what happens to these 2 statements in the case of Horndeski gravity. The
Noether charge for a stationary black hole metric of the form (4.1) is given in [27]. If we write
it as Q = QEinstein + Qγ where QEinstein is the contribution from Einstein gravity and the
minimal coupling, and Qγ is the contribution from the non-minimal coupling, we have:

QEinstein =
rd−2

16πG

√
f

h
h′Ωd−2 (4.9)

Qγ = − 1

32π
(d− 2)γrd−3

√
h

f
f2χ′2Ωd−2 (4.10)

From the above, it is easily seen that Qγ vanishes on the horizon. To see this, we use (4.4) to
substitute for (χ′)2, and note the fact that h/f is regular on the horizon. Thus the integral
of Q on the bifurcation surface reduces to that of QEinstein, and equals the product TS with
S given by the Wald entropy !
The fact that the identity (4.8) is consistent with the Wald entropy, i.e. consistent with the
squashed cone method, should not be surprising. Indeed, there exist quite rigorous arguments
(see for example [36, 37]) that the black hole entropy as derived by the conical singularity
method always coincides with the entropy obtained from the integral of the Noether charge.
Things do go wrong for the first law, however: it can be seen from (4.4) that the derivative
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of the scalar field in the radial direction diverges at the horizon, and the scalar field itself
has a branch cut singularity there. As the analysis in [27] shows, what happens is that the
variational identity (4.7) continues to hold (since it follows from Stokes theorem), but the two
sides of this equation can no longer be identified as δM and TδS (with S taken to be the
Wald entropy). Explicitly, we obtain [27] for the planar case (ε = 0):∫

∞
χ =

(d− 2)

16πG

(
1 +

γβG

4

)
δµ (4.11)

∫
H
χ =

(d− 1)(d− 2)g2

16πG

(
1 +

γβG

4

)
rd−2

0 δr0 (4.12)

where the terms contaning γ above essentially arise from the singularity of the scalar field
mentioned above. In view of this difficulty, the authors of [27] proceed by simply defining the
left-hand side of (4.7) as δM and the right-hand side as TδS. From (4.11) and (4.12), the
authors of [27] then obtain the following definitions for the mass and the entropy:

M̃ =
(n− 2)

16πG

(
1 +

γβG

4

)
µ (4.13)

S̃ =
1

4G

(
1 +

γβG

4

)
rn−2

+ (4.14)

While the definitions above for M and S have the virtue that the first law is automatically
satisfied, it is important to keep in mind that they are merely definitions. In the case of
Einstein gravity, there exist indepdendent, nontrivial checks for the mass and the entropy:
the mass in that case coincides with the Komar integral, and the entropy is of course the
Bekenstein-Hawking entropy, which obeys the second law for example. In the case of Horndeski
gravity, there are no independent checks of (4.13) and (4.14).
On the other hand, we have seen that from the viewpoint of holographic entanglement, it
is much more natural to take the thermal entropy to be the usual Wald entropy since this
is what we obtain from entanglement entropy as the size of the boundary region approaches
the whole boundary. To summarize, for planar black holes we have the following mass and
thermal entropy:

M =
(n− 2)

16πG
µ S =

1

4G
rn−2

+ . (4.15)

The corresponding expressions for ε = 1 are somewhat more complicated, and can be found
in [27].

4.2 Black hole entropy from conical singularity

Even though the analysis above should assure us that the Wald entropy is correct, there is
potentially a loophole because the singular behavior of the scalar field on the horizon contra-
dicts the assumption of regularity of the scalar field used in the derivation of the entanglement
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entropy functional. Indeed, near the horizon, the scalar field expands as:

χ = χ0 +
2
√

(d− 1)βgr
3/2
0

(d− 1)g2r2
0 + (d− 3)ε

√
r − r0 +O(r − r0)3/2 (4.16)

Thus, the assumption of regularity used to derive the expansion (3.19) technically does not
apply in the case of the thermal entropy. In this subsection, we take a closer look at this and
argue that - despite this singularity of the scalar field on the horizon - the conical singularity
method should still yield the Wald entropy.
First, we need to redefine the radial coordinate from the Schwarzschild-like r to the coordinate
ρ used in (3.19) to facilitate comparison between the two near-horizon expansions. Note that
the coordinate ρ in (3.19) satisfies two properties: the horizon is at ρ = 0, and the near-
horizon metric looks like flat space in polar coordinates: ds2 = dρ2 + ρ2dτ2 when we turn off
the conical singularity (ε = 0). Note also that the usual steps taken to derive the Hawking
temperature of a black hole involves precisely a coordinate redefinition with the two properties
above, and this is the procedure we will follow to obtain the transformation from r to ρ. Near
the horizon, the functions f(r) and h(r) in the metric expand as:

f(r) = f1(r − r0) +O(r − r0)2 (4.17)

h(r) = h1(r − r0) +O(r − r0)2 (4.18)

for some coefficients f1 and h1. From the above we obtain the desired coordinate redefinition:

ρ =
2√
f1

√
r − r0 (4.19)

The near horizon expansion (4.16) in terms of ρ now reads:

χ = χ0 + χ1ρ+ . . . (4.20)

for some coefficient χ1. The expansion above is supposed to replace the expansion (3.19) at
ε = 0, so let us compare the two. The expansion above is a function of ρ alone, whereas
(3.19) at ε = 0 allows for angular dependence. This is expected due to the U(1) symmetry of
the black hole (i.e. time translation symmetry) which is not present in (3.19). Secondly, the
leading power of ρ is first order in the expansion above, whereas it is quadratic in (3.19) at
ε = 0. This is, of course, due to the fact that one expansion is regular near ρ = 0 and the other
is not. We also remark that, in terms of ρ, the singularity of the scalar field is only a “kink”
near ρ = 0 as opposed to a divergence (4.16). That the nature of this singularity depends on
the coordinate used should not be surprising; moreover it was noted in [27] already that the
singularity is milder than it seems, in the sense that coordinate-invariant quantities do not
suffer from divergences across the horizon.
The challenge now is to figure out how expansion (4.20) is affected when we turn on ε, because
we need the expansion at finite ε to derive entanglement entropy. Equivalently, we need to
find out the leading power of ρ̃ in the parent space. We remark that this is best done by

– 17 –



first computing the parent-space analog of the Horndeski black hole, then go to the quotient
space and expanding near the horizon. This is clearly a very nontrivial task in general, and
few exact solutions of this type are known (however an explicit parent-space analog of the
hyperbolic black hole is known [28]). Fortunately, we can deduce the powers of ρ̃ in the parent
space based on (4.20): the smallest power of ρ̃ consistent with a first power in ρ at ε = 0 is a
first power in ρ̃. Thus, in the parent space:

χ = χ0 + χ̃1ρ̃+ . . . (4.21)

In the quotient space, this translates to:

χ = χ0 + χ1ρ
1−ε + . . . (4.22)

which, at ε = 0, reduces to (4.20). Of course, there are infinitely many higher powers of ρ̃
which are also consistent with first order in ρ at ε = 0. For example, ρ̃n gives ρ (with no ε
dependence) etc.
Can the anomalous power of χ in (4.22) result in a new contribution to the black hole entropy
? It is true that one can extract a term first order in ε from the expansion above: δεχ =

−εχ1ρ log ρ. However, the fact that ρ log ρ vanishes as ρ → 0 means this term cannot give
rise to any new contribution when we plug it into the action and integrate over a small region
near the tip of the cone. For example, the minimal coupling term gives:∫

ρ≈0
ρdρdτδε (gµνχ,µχ,ν) ∝

∫
ρ≈0

ρdρχρ(δεχ),ρ = 0 (4.23)

similarly for the non-minimally coupled term.
To summarize, we think that the correct entropy should be the Wald entropy for 3 reasons: (1)
the Wald entropy is consistent with the Iyer-Wald formalism, in the sense that it is consistent
with the integral of Q over the horizon; (2) a rederivation of the black hole entropy from the
conical method does not seem to yield any new contribution on top of the Wald entropy, and
(3) the Wald entropy coincides with the limit of entanglement entropy as the boundary region
approaches the whole boundary.

5 Numerical applications

In this section, we find numerically the entanglement entropy of black hole solutions of Horn-
deski gravity given in [27].

5.1 3-dimensional planar black hole

Let us first specialize to the 3-dimensional, planar black hole (d = 3, ε = 0). The metric and
the scalar field profile simplify to:

ds2 = −(g2r2 − µ)dt2 +
dr2

g2r2 − µ
+ r2dx2 (5.1)
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χ =

√
β

g
log (gr +

√
(gr)2 − µ) + χ0 (5.2)

Note that the metric is exactly the BTZ black hole. The horizon is located at r+ =
√
µ/g.

We will find it convenient to go to the Fefferman-Graham coordinate:

ζ =
g

gr +
√
g2r2 − µ

(5.3)

and rescale the boundary coordinates as τ = t/2 and y = x/(2g), the metric then becomes:

ds2 =
1

g2ζ2

[
−(g2 − µζ2)2dτ2 + dζ2 + (g2 + µζ2)2dy2

]
(5.4)

and the scalar field in terms of z satisfies:

dχ

dζ
= −
√
β

gζ
(5.5)

Let us now parametrize the Ryu-Takayanagi surface as Xµ = (τ = const, y, ζ(y)). The
functional to be minimized then takes the form:

SEE =

∫
dx

√
(ζ ′)2 + (g2 + µζ2)2

gζ

(
1 + γ̃

(ζ ′)2

(ζ ′)2 + (g2 + µζ2)2

)
(5.6)

where we defined γ̃ = γGβ
4 . We minimized the functional above numerically and plot in Fig-

ure 1a the entanglement entropy versus the half-width ymax of the boundary interval (which
ranges from −ymax to ymax). For completeness, we present 3 cases: the Einstein gravity case
γ = 0, a case with γ > 0 and a case with γ < 0, even though from the viewpoint of bulk
causality γ is required to be non-positive [29]. In Figure 1b, we present the plot of a few RT
surfaces for a few different values of γ.

Let us comment that all three curves in Figure 1a are concave. Concavity is one of the
hallmark features of entanglement entropy (in fact, of entropy of any kind), and implies the
property of strong subadditivity. From the holographic viewpoint, concavity can be expected
from the fact that the holographic entanglement entropy is the minimization of a functional.
Indeed, the proof of strong subadditivity in the usual Einstein gravity case can be generalized
in a straightforward way to any extensive functional [35].

5.2 3-dimensional, spherical black hole

Next, we consider the 3-dimensional spherical black hole (d = 3, ε = 1). The metric is still
the BTZ metric:

ds2 = −
(
−µ′ + g2r2

)
dt2 +

dr2

(−µ′ + g2r2)
+ r2dφ2 (5.7)

where

µ′ = µ− 16κ2

(βγ + 4κ)2
(5.8)
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Figure 1: d = 3 planar black hole. a)Entanglement entropy as a function of the half-width
of the boundary interval. b) Some representative minimal surfaces. In both plots we have
used g = µ = β = G = 1, and the values of γ are: γ = 0 (black), γ = −0.05 (light green),
γ = −0.125 (dark green), γ = 0.05 (light purple) and γ = 0.125 (dark purple).

and the scalar field profile is identical to that of the 3-dimensional planar black hole.
As usual, for a given boundary interval of half-width θ0 there are two minimal surfaces sat-
isfying the homology constraint: a connected one and a disconnected one which includes the
horizon as a connected component. Intuition from Einstein gravity suggests that there exists
a phase transition from the connected one to the disconnected as we increase the size θ0 of
the boundary region.
In Figure 2a, we vary the size θ0 of the boundary interval from 0 to π and plot the value of
the functional on evaluated on the connected surface and disconnected surface. As expected,
the curve for the connected surface increases monotonically while the the curve for the dis-
connected one decreases with increasing θ0. The two curves intersect at an angle θc (around
2.8 rad), at which point the phase transition happens (since the disconnected one yields a
smaller value of the functional beyond this angle, and the homology constraint instructs us to
use whichever surface has the smaller value).
Like in Einstein gravity, this phase transition has an interesting consequence for the Araki-
Lieb inequality, which tells us that the difference between the entropy of a subregion A and
the entropy of its complement is at most the entropy of the mixed state (the thermal entropy
in this case):

|SA − SAC | ≤ Sthermal (5.9)

For θ0 ≥ θc, the phase transition implies that the difference above is exactly equal to the
thermal entropy, hence the Araki-Lieb inequality is saturated. Put differently, if we were to
plot |SA−SAC |/Sthermal as a function of θ0, we would see an entanglement plateau for θ0 > θc.
Next, we keep the values of the constants g, µ and β fixed (to unity) and vary the value of
the coupling γ. For each such γ we computed the angle θc of the phase transition, and we
plot in Figure 2b the critical angle as a function of γ. In this plot we focus on the negative
γ regime, since this is the regime consistent with bulk causality (see for instance [29]). Note
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Figure 2: d = 3. a) shows the Wald entropy for the connected (blue) and disconnected
(orange) surfaces as a function of the boundary region θ0. We have used µ′ = g = β = G = 1

and γ = −0.1. b) Critical angle θc versus γ, also with g = µ′ = β = G = 1.

that keeping g, µ and β fixed means both the metric and the scalar field profile are kept fixed
as we vary γ. However, because of the relations (4.5) and (4.6), this means the value of α
and Λ are actually varied, so that the different curves belong to different Horndeski theories.
Also, for γ = 0, Figure 2b is consistent with the analytical value of the critical angle which
was computed analytically in [38] for the usual BTZ black hole:

θc =
1

r+
arccoth(2coth(πr+))− 1 (5.10)

In terms of the entanglement plateau, this means that the plateau becomes larger and larger
as we make γ more and more negative.

5.3 4-dimensional, spherical black hole

In this subsection, we present the phase transition for a higher-dimensional case: the 4-
dimensional black hole. We relegate the plots of the minimal surfaces themselves to Appendix
B. From this Appendix, a noteworthy feature of the RT surfaces is that the connected surface
stops existing for sufficiently large θ0. Equivalently, the disconnected surface does not exist
for sufficiently small θ0. This feature is potentially worrisome, since it implies that the com-
petition between the two kinds of surfaces only exist within a range of θ0 smaller than (0, π).
The phase transition, thus, must occur within this band.
In Figure 3b, we plot the angle θc of the phase transition as a function of the non-minimal
coupling γ at fixed g (which corresponds to the AdS lengthscale at infinity) and fixed tem-
perature T . The plot is quite similar to the 3-dimensional one 2b. Like in the 3-dimensional
case, we focus on the negative γ regime.

6 Conclusions and future directions

In this paper we obtained the holographic entanglement entropy functional for a particular
class of gravity with tensor-scalar coupling, Horndeski gravity. We find that the entanglement
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Figure 3: d = 4. a) shows the Wald entropy for the connected (red) and disconnected (green)
surfaces as a function of the boundary region θ0. We have used g = β = G = 1, γ = −0.1 and
µ = 2.711055. b) Critical angle θc versus γ, with g = µ = β = 1.

entropy receives a Wald-like contribution proportional to the gradient-square of the scalar
field. We show that, as in Lewkowycz-Maldacena, demanding that the divergence of the zz
component of the bulk equation of motion vanishes allows us to identify the surface where to
evaluate the entanglement functional. This surface turns out to be the one that minimizes
said functional. We also pointed out the existence of other divergences that deserve more
study: quadratic divergences in other components of the equation of motion and subleading
divergences in the zz component. As an application of the entanglement functional found, we
present explicit minimal surfaces for black hole solutions and show that they exhibit similar
features to the ones observed in Schwarzchild-AdS: the connected surface ceases to exist for
sufficiently large boundary region and there exist subdominant saddles. We also study the
phase transition due to the exchange of dominance between connected and disconnected sur-
faces. We show that the size of the entanglement plateau (at fixed temperature) depends on
the non-minimal coupling.

The thermal entropy of the Horndeski black holes we study here was not well established.
It has been previously investigated in the literature but different methods of calculating it
yielded different results. We used the entanglement entropy functional derived here to shed
light on this issue. We identified an oversight in the literature and determined the correct
thermal entropy.

Let us conclude with some future directions.

• Other divergences. As previously mentioned in section 3.3, the cancellation of the Tzz
divergence implies that the entanglement functional should be evaluated on the surface
that minimizes it. However, similar to what occurs in higher derivative theories, there
are divergences in other components of the equations of motion. In [34] the authors
showed that in the case of Gauss-Bonnet gravity these other divergences cancel if a
more general ansatz is taken. This ansatz includes two types of new terms compared to
(2.11): terms that break replica-symmetry, and terms that can be gauged away at ε = 0
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(but not at nonzero ε). It is the latter kind of new terms that are responsible for the
cancellation of subleading divergences in the case of Gauss-Bonnet gravity. It would be
very interesting to investigate if a similar cancellation occurs in the case of scalar-tensor
gravities.

• Splitting problem. As mentioned previously, the splitting problem has to do with the fact
that the scalar field on the minimal surface splits into a sum of different contributions
when we turn on ε. Investigating this splitting pattern further is of interest. Such an
investigation was carried out in the simpler case of dilaton gravity in [32] by solving the
equation of motion at ε ≈ 0 near the tip of the cone. We also expect that a resolution
of the splitting problem will shed some light on the problem of cancelling divergences of
the equation of motion mentioned in the previous point.

• Field theory dual. Identifying the precise dual of Horndeski gravity is an open ques-
tion that deserves study. In particular, carrying out the holographic renormalization
programme for Horndeski gravity seems an important and attainable goal.

• Causal wedge. The causal structure of Horndeski gravity has been extensively studied
[29, 30]. In the context of holography, it is understood that the RT surface should lie
on the causal shadow in order for the boundary theory to be causally well defined. In
[39] it was proven that this is indeed the case if we consider Einstein gravity. It would
be interesting to verify if this is also the case in Horndeski or more general scalar-tensor
theories. This causality constraint could be used to rule out certain scalar-tensor theories
from having QFT duals.

• Conformally coupled theories Conformally coupled black holes have been knnown for
quite some time [40][41][42][43]. It would be interesting to derive, following the same
approach as in the present work, the entanglement functional relevant for those theories.

• Quantum corrections 1/N quantum corrections to the entanglement entropy involve Sbulk
i.e. the entanglement entropy of the entanglement wedge with the rest of the spacetime,
in a manner reminiscent of the generalized entropy of black holes. The scalar-tensor
coupling will surely contribute to Sbulk.
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A Minimal surfaces in 3d

We plot in Figure 1b a few Ryu-Takayanagi surfaces for the 3-dimensional planar black hole
for various values of γ at fixed g, µ and β. In this appendix, we elaborate further on this plot.
For the Einstein case γ = 0, the surface (black curve in Figure 1b) is given by the analytical
expression (we set g = µ = 1):

z(y) =

√
1−K cosh (2y)

1 +K cosh (2y)
(A.1)

Here K is an integration constant.
Although this may not be apparent from Figure 1b, the near-boundary region of these surfaces
is qualitatively different depending on whether γ is negative or positive. For positive γ, the
surface is always perpendicular to the boundary, while for negative γ this is not the case: the
surface does not approach the boundary at right angle for negative γ. This fact can appear
surprising, but it comes from the contribution of the scalar field to the entanglement entropy:
the γ term is basically the norm-squared of the gradient of the scalar field on the surface, and
this term occurs with a negative sign in the functional (3.8).
Note that the norm-squared of any vector is positive in a Riemannian metric. Hence, the
sign of the γ term in the functional (3.8) is the opposite of the sign of the coupling γ itself.
For negative γ, the functional is minimized if the magnitude of hijχ,iχ,j is minimized on the
surface. But since χ is only a function of z, the quantity hijχ,iχ,j has maximal magnitude
if the surface approaches the boundary perpendicularly. Therefore, in the case of negative γ,
the surface should approach the boundary at some angle less than π/2 to keep the magnitude
of hijχ,iχ,j small. On the other hand, for positive γ, the functional becomes smaller if the
magnitude of hijχ,iχ,j becomes larger. In this case, the surface should approach the boundary
perpendicularly because this is when hijχ,iχ,j is maximal.
As for the global black hole, we present in the left panel of Figure 4 the connected minimal
surface for various boundary interval (from very small to the whole boundary circle) for a
negative value of γ. Like the usual minimal surface of the Einstein-gravity BTZ black hole,
the connected surface can wrap around the horizon all the way.
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Figure 4: Connected minimal surfaces. Left: d = 3, g = µ = β = G = 1 and γ = −0.1.
Right: d = 4, g = β = G = 1, γ = −0.1 and µ = 2.711055.

B Minimal surfaces in 4d

In this appendix, we present the plots of the RT surfaces for the 3+1 dimensional (spherical)
Horndeski black hole, with the boundary region taken to be a disk θ ≤ θ0. These surfaces
behave qualitatively different from the ones in 2+1 dimensions in 2 ways:

• The connected surface does not exist for all values of θ0. There exists a critical value
θm such that no connected RT surface exists for θ0 > θm. In general, the threshold
θm depends on the numerical values of the coupling constants, in particular γ. In the
right-hand side of Figure 4, we plot a few connected RT surfaces for various sizes of the
boundary region, up to the critical value θm.

• There exists subdominant saddles which come closer to the horizon than the threshold
surface θ0 = θm. For the same boundary region, we may have more than one RT surfaces:
the dominant one and the subdominant one. We illustrate this in Figure 5.

Figure 5: A subdominant saddle (in green) and the minimal surface (in orange), d = 4,
g = β = G = 1, γ = −0.1 and µ = 2.711055.

We note that both features above (the existence of θm and of subdominant saddles) are
also present in Einstein gravity, as explained in [38].
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